Potential of Pluripotent Stem Cells for the Replacement of Inner Ears
نویسندگان
چکیده
The inner ear, which manages our senses of hearing and balance, has mechanosensitive hair cells, which convert vibration into electronic signal to depolarize auditory or vestibular neurons. Inner ear functions depend largely on hair cells, their associated neurons and cochlear lateral wall, and defects in these cells result in hearing loss and deafness. Although some investigations indicated hair cell regeneration in mammalian vestibular sensory epithelia, loss of mammalian auditory hair cells is currently irreversible, which is the reason why hundreds of millions of people worldwide with hearing impairment have no way of restoring their auditory function. To date, the cochlear implant, which is designed to electrically stimulate the auditory neurons, is the only available prosthesis for severe to profoundly deaf individuals. However, it depends on remaining auditory neurons, named as spiral ganglion neurons, and their loss severely compromises its efficacy. In this context, several research strategies are directed toward replacing the degenerating spiral ganglion neurons following hearing loss. Here we review recent advances in the field of inner ear regeneration using pluripotent stem cells.
منابع مشابه
سلولهای بنیادی پرتوان القایی از تولید تا کاربرد: مقاله مروری
Embryonic stem cells are pluripotent stem cells which have the ability to indefinitely self-renew and differentiate into all differentiated cells of the body. Regarding their two main properties (unlimited self-renewal and multi-lineage differentiation), these cells have various biomedical applications in basic research and cell based therapy. Because the transplantation of differentiated cells...
متن کاملDifferentiation of human embryonic stem cells into neurons
Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...
متن کاملDifferentiation of human embryonic stem cells into neurons
Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...
متن کاملInduced pluripotent stem cells (iPSCs) based approaches for hematopoietic cancer therapy
Induced pluripotent stem cells (iPSCs) are reprogrammed from somatic cells through numerous transcription factors. Human induced pluripotent stem cell approaches are developing as a hopeful strategy to improve our knowledge of genetic association studies and the underlying molecular mechanisms. Rapid progression in stem cell therapy and cell reprogramming provides compelling reasons for its fe...
متن کاملReprogramming by cytosolic extract of human embryonic stem cells improves dopaminergic differentiation potential of human adipose tissue-derived stem cells
The extract of pluripotent stem cells induces dedifferentiation of somatic cells with restricted plasticity. In this study, we used the extract of human embryonic stem cells (hESC) to dedifferentiate adipose tissue-derived stem cells (ADSCs) and examined the impact of this reprogramming event on dopaminergic differentiation of the cells. For this purpose, cytoplasmic extract of ESCs was prepare...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012